Di Bartolomeo’s Syndrome,* Translational Symptoms of Patulous Eustachian Tube Anomaly in Current Medicine

Joseph Di Bartolomeo, MD, FACS
Santa Barbara, CA

Educational Objective
To recognize the semeiotic symptoms of a Patulous Eustachian tube (PET) in the perfunctory, Otologic examination, as an anomaly contrary to any closed Eustachian tube Dysfunction (ETD).

Objectives
To demonstrate the unique clinical symptoms resulting from contemporary etiology of PET, as witnessed in 20th century medicine and lifestyles.

Methods
FDA, IND 40,202: Phases I and II were completed in the first 6 years. During phase III clinical trials, the FDA informed us by phone in the 8th year, that they lost the entire file. The FDA would allow the study to recycle the subjects and start over, again. The drug-free, PatulEND®, was later developed.

Results
The PET anomaly was determined not to be rare, but instead misdiagnosed for centuries.

Conclusions
DiBartolomeo Syndrome is a clinical entity that results directly from the reflux and/or the flow of air (venturi) through the tube, the compromised rheologic properties of the mucosal blanket and surface tension along the tube.

Discussion
The semeiotic spectrum of symptoms includes the mild, intermittent (semi-patulous) phenomenon of tubal rales and the alternative continuously patulous state generating the pathognomonic symptom of autophony, active only with erect posture, soon accompanied by exaggerated anxiety.

The more common, intermittent reflux, generates tubal rales which sound different depending on surface contact and moisture content. It is too frequently misdiagnosed as ETD.

The less common patulous variant, with continuous airflow resulting in pathognomonic autophony and amphoric sounds, due to the luminal diameter and alterations in the rheology of the mucous blanket and surface tension.

Relevant Literature


UNEQUESTIONS: Source of vitamin C / Antioxidants
Humans cannot synthesize vit. C. Exogenous source is required.

Method of pH levels
Low pH inhibits the resistance and virulence of microorganisms. Specific pH levels enhance nutrient- tissue metabolic reactions.

Epithelial adherence
PatulEND® reduces adherence by biofilm and atibiotic products.

Antioxidant properties
PatulEND® activates antioxidants to break down free oxygen radicals.

Surfactant properties
PatulEND® has surface tension lowering properties to release the biofilm and toxic products from the host membranes.

Enzymatic co-factors
Facilitates pre-collagen formation and strengthens tissue healing.

Bioavailability
Vitamin C enhances chloride (Cl) transport across membranes via trans-membrane conductance regulator channels (TR-CI).

Altered gene expression
PatulEND® inhibits activation of NF-kb of endothelial cells.