Endoscopic Resection of Encephaloceles Using a Bipolar Microdebrider

Joseph Brunworth, MD1; Raj Sindwani, MD, FACS, FRCS2
1University of California-Irvine Medical Center
2Head & Neck Institute – Cleveland Clinic Foundation, Cleveland, OH

INTRODUCTION

• Encephaloceles, meningoceles, and meningoencephaloceles are abnormal herniations of the meninges, brain, or both, beyond the confines of the cranial cavity.
• Endoscopic management has gained significant favor, but controlling bleeding during resection especially at the skull base remains a challenge.

METHODS AND MATERIALS

• Retrospective review of patients who underwent endoscopic resection of encephaloceles using a bipolar microdebrider.
• Patient demographics, intraoperative parameters and surgical outcomes analyzed.

RESULTS

• Encephaloceles endoscopically resected to the skull base with bleeding controlled along the way using a variety of straight and angled bipolar microdebrider blades (Fig 2).
• Once resected, care was taken to cautere the encephalocele stump at the skull base before it was reduced intracranially (Fig 3).
• Multi-layered skull base repair then performed using mucosa and bone or cartilage (Fig 3).

DISCUSSION

• Application of microdebriders for resection of sinonasal lesions including encephaloceles offers the advantage of improved precision, expeditious tissue removal, and better visualization due to continuous suctioning.
• Added ability to control bleeding with bipolar energy is a considerable gain, especially for resection of pathology involving the skull base where hemostasis is of critical importance.

CONCLUSION

• The bipolar microdebrider offers distinct advantages and enhanced ability to remove tissue and control bleeding at the skull base.

REFERENCES


For a complete list of references please contact our corresponding author.