ABSTRACT

Chronic cough is a challenging diagnostic and therapeutic entity due to its multiple etiologies. For patients whose cough does not improve with appropriate treatment for common causes, a neuropathic etiology can be considered. This characteristic symptom complex is typically longstanding, has trigger phenomena, is preceded by tickle sensations in the throat, and produces paroxysms of unproductive cough. The objective was to describe the utility of cricopharyngeal myotomy in alleviating symptoms of intractable neuropathic cough.

INTRODUCTION

A retrospective chart review was performed for three patients who underwent cricopharyngeal myotomy for intractable cough. Trigger phenomena, previous evaluation and treatment, and outcomes after surgery, namely patient perception of improvement and medication use after surgery, were assessed and documented.

METHODS

A retrospective chart review was performed for three patients who underwent cricopharyngeal myotomy for intractable cough. Trigger phenomena, previous evaluation and treatment, and outcomes after surgery, namely patient perception of improvement and medication use after surgery, were assessed and documented. Outcome measures included use of medication after surgery and patient perception of improvement.

RESULTS

Table 1 shows the characteristics of the three cases. All were women aged 61-62 who had suffered from unpredicted paroxysms of non-productive coughing for 15-22 years. Each had also been found to have an elevated upper esophageal sphincter pressure on manometry (mean: 184 mmHg, range: 125-213 mmHg). None had obtained lasting relief from cough after trials of anti-angry, anti-reflux, and more traditional therapies. Incomplete or temporary relief was experienced from neuropathic medications and esophageal dilation. Two had experienced temporary improvement for 6 months after botulinum toxin injection into the cricopharynx.

Subsequent cricopharyngeal myotomy was performed in all patients. All noted symptomatic improvement and were weaned off medication. Continued improvement was noted at follow up, with a mean length of 22 months (range: 7-36 months).

DISCUSSION

In the majority of patients, systemic evaluation and optimal therapy will lead to successful resolution of chronic cough. However, in patients for whom thorough work-up and empirical treatment have not produced a solution, several models have been described. These include irritable larynx syndrome, sensory laryngeal neuropathic cough, and post-viral vagal neuropathy, which fall under the newly coined umbrella term of chronic cough hypersensitivity syndrome. Just as other neuropathies may manifest as paroxysms or hypersensitivity to stimuli, vagal neuropathy may present as dysphonia, dysphagia, paresis, pain, laryngospasm, or cough. Neuropathy of motor branches may lead to symptoms of dysphagia and dysphonia while that of sensory branches produces pain and decreased cough threshold.

Bastian et al proposed criteria for a neuropathic model of intractable persistent cough, including irritable cervical and laryngeal sensations, severe attacks of non-productive cough that may be triggered or occur spontaneously, and exclusion criteria based on psychogenic factors such as secondary gain and abrupt onset or resolution. Based on this model, 75% of their patients were treated successfully with amitriptyline. By treating paroxysmal chronic cough as a neuropathic pain disorder, Lee and Woo were able to achieve symptomatic relief in 68% of patients using gabapentin, while Van de Kerkhove et al used gabapentin to decrease cough severity in 20 of 35 patients. A randomized controlled trial by Ryan et al showed clinically and statistically significant improvement with gabapentin in 84% of patients compared to 40% on placebo; however, cough returned after cessation of therapy. Chu et al attributed the decreased threshold for cough stimulation and increased laryngeal tone to hyperexcitable sensory and motor pathways and aimed to inhibit neurogenic inflammation and hypertonicity using botulinum toxin injection of the thyroarytenoid muscles. They reported complete resolution of cough in a case series of 4 patients.

In this paper, we report on the use of cricopharyngeal myotomy to treat chronic cough. The rationale behind targeting the cricopharynx came from the observation that these patients identified a trigger at the approximate level of the cricopharynx and had elevated UES resting pressures on manometry. Additionally, each had previously obtained improvement in cough from dilation and/or botulinum toxin injection of the UES, which can be considered alternatives to cricopharyngeal myotomy. However, relief was self-limited and therefore cricopharyngeal myotomy was offered as a possible permanent solution. Notably, all patients experienced marked improvement. Our experience with cricopharyngeal myotomy suggests that successful treatment of neuropathic cough can be achieved by relieving pharyngeal hypertonicity in select patients. The recent literature on endoscopic cricopharyngeal myotomy suggests that the technique may also be a viable consideration for this population. However, this would require further study.

CONCLUSION

In conclusion, cricopharyngeal myotomy may be an efficacious treatment for chronic cough in patients for whom workup is negative and medical management, dilation, and botulinum toxin have failed to provide long-term relief. However, further study is warranted in this patient population to support this assertion.

REFERENCES