Intracanalicular Venous Malformation of the Internal Auditory Canal

Omar H. Ahmed, MD; Eric W. Cerrati, MD; David R. Friedmann, MD; Matija Snuderl, MD; Mari Hagiwara, MD; Daniel Jethanamset, MD

Department of Otolaryngology-Head and Neck Surgery. New York University Langone Medical Center.

INTRODUCTION

Nearly 90% of cerebellopontine angle (CPA) and internal auditory canal (IAC) tumors are vestibular schwannomas (VS) 1-2. Vascular malformations of the IAC and CPA are rare lesions that may clinically and radiographically mimic VS. Vascular malformations are typically categorized as arteriovenous malformations, cavernous malformations, venous malformations (VMs), and telangiectasias.3 They are hamartomas that can cause tumor-like, compressive local effects when they enlarge from hemorrhage.3

Patients with vascular malformations may have identical symptoms to those presenting with VS however these patients tend to have increased likelihood of facial nerve abnormalities and more severe than would be expected hearing loss.1,4

We present a case of a 54 year old male with a venous malformation of the distal right IAC.

CASE PRESENTATION

History

A 54 year old male presented to our clinic with 2 years of persistent episodic vertigo, right-sided tinnitus, and rapidly progressing right-sided hearing loss. He also endorsed periodic facial twitching over the right forehead/brow region that was infrequent. Audiogram performed at initial onset of symptoms demonstrated mild right-sided SNHL however audiogram performed nearly a year later demonstrated progression to profound right-sided SNHL. The episodic vertigo was particularly distressing to the patient as it was interfering with his occupation.

Patient denied other symptoms including fever, headache, otalgia, and otorrhea. Patient's medical history was unremarkable. No history of trauma.

Clinical Exam

On physical exam, no facial spasm or asymmetry was appreciated. There was no nystagmus. The ear canals and tympanic membranes were normal appearing bilaterally. Lateralization to the left was appreciated on the Weber test. Rinne test was unremarkable. Audiogram demonstrated profound right-sided SNHL across all frequencies.

Magnetic Resonance Imaging (MRI)

T2-weighted images demonstrated a 0.8 x 0.4cm filling defect in the distal right internal auditory canal (Figure 1), extending to the fundus and filling the cochlear aperture. No evidence of extension into the inner ear structures was apparent. On post-contrast imaging, patchy and partial enhancement of the lesion was appreciated, greatest laterally at the fundus. Progressive increased central enhancement within the lesion was seen on sequential imaging (Figure 2a / 2b).

Management

Because of the patient’s debilitating vertigo and lack of serviceable hearing, a translabyrinthine resection of the intracanalicular lesion was performed. The lesion appeared to be very adherent to the superior vestibular nerve and facial nerve near the fundus and was vascular appearing. The lesion was excised and noted to be soft and compressible.

Post-Operative Course

The patient’s vertigo and tinnitus resolved postoperatively. He has not experienced any further facial twitching however he has a mild facial weakness (HB 2/6) after 6 months of follow-up which is currently being observed. The histopathologic examination of the lesion demonstrated large vascular spaces lined with thin endothelium, surrounded by fibrous tissue. These findings are consistent with VM.

CONCLUSIONS

VMs are a type of vascular malformation. Their occurrence in the IAC is exceedingly rare with only a few cases reported. They are congenital in origin and when arising in the IAC, are thought to develop from the vascularplexus of Scarpa’s ganglion.5-7 They are low-flow, low-resistance lesions that have minimal risk of hemorrhage, estimated to be about 0.22% per year.1 Preoperative diagnosis is challenging as imaging and clinical characteristics typically overlap with those of VS.

Despite their typically diminutive size, patients commonly present with rapidly progressing unilateral hearing loss and/or facial nerve abnormalities (i.e. spasm or paresis), depending on the location of the lesion.1,4 This is in contrast to VS of a similar size, where facial nerve abnormalities would be unlikely and hearing loss would be expected to progress at a slower rate.

MRI imaging characteristics may help to discern the diagnosis of VM. Following gadolinium administration, enhancement of the lesion is typically partial or heterogeneous whereas it is typically homogeneous and avid (in non-cystic areas) in VS.3,7,8 On sequential post-contrast imaging, progressive central enhancement within the lesion may be identified.

Given the low risk of hemorrhage, many advocate for close observation.8 However if progressive neuropathies are evident, microsurgical resection of these lesions may provide relief.

REFERENCES


CONTACT

Omar Ahmed, MD
NYU Langone Medical Center
Email: Omar.Ahmed@nyumc.org